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We have derived the equations for finding characteristic exponents in 

the case of simple resonance of a linear quasistatic system of second 

order differential equations with periodic coefficients. For a certain 

class of equations we investigate the stability on the conjugate 

resonant frequencies. We consider the effect of friction on the stability 

of Solutions. Following [II, for a wider class of systems we show that 

the introduction of friction, or an increase of friction already intro- 

duced, may result in turning a stable solution into an unstable one. 

This phenomenon takes place only in combination resonances; it does not 

occur in the case of simple resonance. 

1. Let us consider a system of differential equations 

‘2: + piV ,U 1) ‘s $ (C $ p P (0 t)) Y = 0 (1.1) 

Here Y is an m-dimensional vector, p > 0 and 0 > 0 are real para- 

meters, C is a diagonal matrix and oS 2>0 

( 
q2 . . . 0 

c := . . . . . . ) 
0 co,,2 i 

N (T) :_ f ,vkp- 
. . . Ii=-co 

iv (z + 24 E N (‘c), N, = (1 v. @)(I * JS 1’ -g / k‘V, ( < 00 (1.2) 
k=-cc 

p (T + 24 = p (T), P (t) = $ Ph.eikr, 2 ipki<30 
kc-cc k=-00 

The coefficients in (1) 1) are real for real values of 7. 

Definition 1.1. We shall refer to the system of equations (1.1) and 
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(1.2) as belonging to class M (i.e. mechanical systems), if its charac- 

teristic exponents [2, p. 1681 are located symmetrically with respect to 

the imaginary axis. 

In Definition 1.1 the condition of symmetry of characteristic ex- 

ponents may be replaced by the condition of symmetry of multipliers, 

which are the roots of the characteristic equation [2, p. 1651, with re- 
spect to the unit circle. 

System (1. l), describing a reversible mechanical process, will always 

be of class M. If the Hill’s determinant [31, formed for system (1. l), 

is real for p = io and Im o = O, then system (1.1) belongs to Class M. 

Let us indicate particular cases of systems of class hf. 

1) A system of equations (1.1) does not change its form if t is re- 

placed by -t. For that it is sufficient to let 

P(-T)GP(T), N (-z) EZ - N (z) (1.3) 

2) System (1.1) is self-conjugate. For that it is sufficient to let 

P* (.c) 3 P (zl, N* (z) E -N (t) E const (1.4) 

3) An arbitrary system reducible to (1.3) and (1.4) by the trans- 

formation 

x = B (t) Y, Det B (t)# 0, B (t + 2~l6-‘) E B (t) (1.5) 

where the matrices B(t) and B-‘(t) are bounded, together with their first 

and second derivatives for t E CO, 27~0-~1. 

The characteristic exponents of system (1.1) are determinate UP to 

an additive term kei (k = 0. fl, f2, . . . ). They fall into 2m groups 

which for u = 0 have the form 

(s = 1, . . ., m, k = 0, +1, _t2, . . .) (1.6) 

The characteristic exponents are located in the complex plane sym- 

metrically with respect to the real axis. They change their position 

continuously with the continuous change of parameters CI and 8. The null 

solution of system (1.1) of class M cannot be asymptotically stable for 

t - + 0. If there is an unbounded solution of the form 

exp WI ‘pl (t) (Re 23 > 0, cp 0 + 2ne-1) = cp 0) 

then there necessarily exists a solution of the form 



The danger of combination resonances 1747 

‘PZ 0) expIp,tl We pn = - Re PI< 0, Im pa = Im pl, qa (t + 2~~0-9 E q1 (t)) 

When the Parameters M and 8 approach the boundary of the region of 

instability, the characteristic exponents p1 and p2 approach the imagin- 

ary axis from opposite sides. The exponents coincide when the point of 

parameters v and 8 reaches the boundary of the instability region. Hence, 

the equation of the boundary of the instability region of system (1.1) 

of class M can be obtained from the condition of multiplicity of charac- 

teristic exponents. For p = 0 the condition of coincidence of character- 

istic exponents has the form 

n-‘)oj+OhI =e, v, h = 1, . . ., m; n = 0, 1, 2, . . .) (1.7) 

For oj = ah we have the case of simple resonance; if o. # oh the re- 

sonance is referred to as combination resonance [2, p.341 1. The paper 

concerns itself with the case of resonance when, for a given 8,, rela- 

tion (1.7) is fulfilled for a unique set of values of j, h and n and a 

choice of sign in (1.7). 

For a system of equations (1.1) of class IV we always have 

v (0) = 0 
88 (s = 1, . . ., m) (1.8) 

Definition 1.2. A system of equations (1.1) in which the quadratic 
form 

f (Y1t * * *9 
Y,,,) = Y*N,Y > 0 for Y*Y # 0 (1.9) 

is positive definite shall be referred to as a system of Class M with 

friction, if it belongs to class M for N, E 0. 

If (1.9) is fulfilled we have vsio) > 0 (s = 1. . . . . m). For the 

characteristic exponent p, ( F, 8)) where 

p* (09~3 =os6 0, k+oh # N, (h= 1, . . ., m, k = * 1, f 2, 

in the first approximation we obtain the equation 

p2 + pv (O)p + Co a f (18 * pa% co) + 0 @B) = 0 88 

For u > 0 we have 

. . 0) (1.10) 

(1.11) 

(1.12) 
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Therefore, the question of stability of system (1.1) is solved only 

through the "resonating" exponents pi which are close to ioj for small 

values of 1~1 and 10 - 8,(. The region of instability of a system of 

class M can be found from the condition Re pj > 0. Let US note that, as 

a rule, SOlUtions of a system of class kf are unstable on the boundary 

of the region of instability. Solutions of a system of class k! with 

friction are always stable. 

Definition 1.3. A frequency 8 

[41, if f 9 
will be referred to as strongly stable 

or matrices N'(T) and P (T), which are arbitrary but varied to 

a sufficiently small extent in (1.1) 

I A” (T) - -v (4 I < 8, I p’ W - P W I < e (--<t<m) (1.13) 

and which allow system (1.1) to remain in class M, the solutions of 

system (1.1) will be stable for all values of 0 and ~1 satisfying the 

condition 

Ie--o1<& o,<p<a* a>0 (1.14) 

where E and 6 are some positive numbers. 

Only a denumerable number of resonant frequencies, namely those of 

tbe form (l.?), may not be strongly stable. 

Definition 1.4. A frequency 0, will be referred to as strongly un- 

stable, if, for matrices N'(7) and P'(T), which are arbitrary but 

varied to a sufficiently small extent in (1.1). which satisfy (1.13) 

and which allow the system (1.1) to remain in Class M for WY E > 0 and 

fj > 0, the values of 8 and ~1 can be found from (1.14) such that the 

solutions of system (1.1) will be unstable. 

In this case a wide region of instability will be adjacent to the 

resonant frequency 0,. 

bet US agree to call the constant symmetric matrix C a simple POSi- 

tive definite matrix, if a positive definite quadratic form corresponds 

to it. 

2. Below we consider basically the combination resonance with fre- 

quencies 0, which are close to the resonant frequency 

f30=0,,j,h=n-110j+~hl (2.1) 

The formulas for another resonant freWencY 8,. 

e,* ~0 t = n-ljoj-_o 
n. I. h h ’ oj>Oh (2.2) 
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can be obtained from 

‘Oh. The frequencies 
quencies. 

the formulas for case (2.1) if uh is replaced by 
0s j ,, and 0; j h 

l , will be called conjugate fre- 
, , 
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We look for the solution of system 
series 

Y(t) =CP 5 Y8eaiet, 
8=-m 

(I. I) in the form of a vector 

(2.3) 

Substituting Y(t) from (2.3) into (1.1) and setting the coefficients 
at different exponents equal to zero, we find an infinite system of 
1 inear algebraic equations 

iE b + k@ i)” + cl yk + p g [N&r (p + sei) + pk_& y, = 0 
*=-CO 

(k = 0, f 1, f 2, . . J (2.4) 

Let us change from (2.4) to scalar notation and introduce the de- 

signet ions 

d, (k) = [(P 4 

Equations (2.4). 

!,ka = - W, (k) 5 

kOi)s + o,a)-‘, f&S” = 
as P-@ @ + SC) + Jl$-6) llr 

solved for yka, take the form 

(2.5) 

f,k,.“y,, (k=0,*1,&2,. . ., a= 1,2,. . .,m) (2.6) 

We consider system (2.6) in the region 

I CL I < El? 10 -801 <Em IP- iOjI <es (2.7) 

It is assumed all the time that, given 8, and 8,*, relations (2.1) 
and (2.2) are fulfilled only for a unique set of values of j, h, n 
(j, h = 1, 2. . . . . II; n = 1, 2, . . .). For sufficiently small values of 

E1* Ez and ~3 all the functions d,(k) (2.5) will be bounded in region 
(2.7) except two: dj(o) and dh(-n). (2.1) and (2.5). In the latter ones 
the denominators become equal to zero for 8 = 6, and p = ioj. Let us 
exclude the two equations with the indices k = 0, a = j and k = - n, 
a = h from system (2.6). The remaining equations will form a completely 
regular system [5, p.1671 for sufficiently Small Values of EI, ~g and 

sj in (2.7) 

m M 

Y - - W, V4 2 ka - r)’ .fct.'**~sr - @, (4 VA".yoj + f,;-"y_J (2.8) 
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Here and below the stroke in the sum means that in the summation the 

terms with indices r = j, s = 0 and r = h, s = - n are omitted. The 
solution of system (2.8) can be obtained by the method of successive 

approximations [5, P. 1601. We have 

m co 

Yki, = 1 - pd, (k) /,;zo+ v2 2 2’ d, (k) f$d, (s) f,;*"- . . . J Y0j + 
i-=1 s=--co 

+[- 
vd, (k) fat-” i CL’ $ ;’ da (k) f,ftsd, (4 f,,“,s-” - . Y_~ 

1 (2.9) 
r= 1 s=- 

Substituting (2.3) into the remaining two equations 

(2.10) 

with indices k = 0, a = j, k = - n and a = h we obtain the system 

'ilY,)j + a12Y_nh = 0, a!21yoj + %!y_nh = 0 (2.11) 

The known quantities ask (s, k = 1, 2) have the form 

all = p* + 0j2 + pfjl;o’ - ~2 5 
cc 

2’ fj;-“dr ($ frsso + 0 (P) 

al2 = yjjy - 92 ~ ~’ fjf’sd, (s) r,s;-” 3_ 0 ~“) (2.12j 

a21 = Pfhj -wO - p2 2 2’ fh;flfsdr(s) f,;*" -+ 0 (p3) 

The condition for the existence of the non-zero solution of system 

(2.11) is 

all=22 - a12a21 = 0 (2.13) 

Equation (2.13) will permit the determination of characteristic ex- 

ponents which are close to ioj in region (2.7). The same equation could 

be obtained from formula (1.6) [61. The derivation given here is simpler. 

3. Here and below we will always assume that for given 8, and 8,. in 

(2.1) and (2.2). the values of j, h and n can be chosen in a unique way 

(except for the interchange of places of oj and oh). Let us set in 

(2.13) and (2.12) 

p = ioj + izp, 0 =e,+ htb 00 = n-l (Oj + Ofi) (3.1) 
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with the accuracy up to small values O(v). Equation (2.12) takes the 

form 

iv.(P) + n.w / (J). - 22 (n) 
33 II 1 “,h - nj’h”’ /o; ’ 0 = 

iv,,‘j-n’ $ sCh(j-n’ / Oj ivhj:) - xhJIo) i Wh - 22 + 2hn 
(3.2) 

Equation (3.2) can be obtained from a more general equation (5.6) [3]. 

For the resonance part of Be* (2.2) the equation for characteristic ex- 

ponents differs from (3.2) only by the sign at ah. Let us introduce the 

designation 

(3.3) 

The bar denotes the complex conjugate. Quadratic equation (3.2) has 

the solution 

(3.4) 

For system (1.1) of class U without friction Vjj(0) = “h,,(O) = 0. 

Since z 1 and z2 must be located symmetrically with respect to the real 

axis, the expression under the radical sign in (3.4) must be real for 

1x1 h = 0, i.e. Im g = 0 (3.3). Hence we have the theorem. 

Theorem 3.1. In order for system (1.1) to belong to Class U it is 

necessary that 

(3.5) 

Theorem 3.2. In order for system. (1.1) to belong to Class M for all 

possible positive definite.diagonal matrices C, it is necessary that 

in (1.1) 

arg Jl,ij 

(71) ~_ 
(‘I) -= arg n;,, 

01) _ 3 

arg v,,j _;j- 
(‘1) _ 

-z arg v,,, + (mod n) (3.6) 
. 

Conditions (3.5) and (3.6) are fulfilled in cases (1.3) and (1.4). 

For a system (1.1) of class M without friction, on the boundary of 

the region of instability the expression under the radical sign is equal 

to zero. Hence, it follows that 
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(3.7) 

where g is determined in (3.3). Let us consider the case of a system 
(1.1) of class M in which N(T) 5 0 

CPY 
x -t cc + pp (WI y = 0 01 >, 0) (3.8) 

From formula (3.7). where vj6-“) = vji,“) = 0, follows the theorem. 

Theorem 3.3. For a system of equations (3.8) of class M with a posi- 

tive definite diagonal matrix C: 

1) The frequency 6 = 8” i h (2.1) will be strongly stable for 
, 2 

‘hj 
(-~qw < 0 

(3.9) 

2) The frequency 8 = on j 
, , 

h (2.1) will be strongly unstable for 

Tchy%cj(~) > 0 (3.10) 

3) The frequency 8 = 6; j 
, , 

h (2.2) will be strongly stable if (3.10) 

is fulfilled. 

4) The frequency 8 = tf’, I 
, a 

h (2.2) will be strongly unstable if (3.9) 

is fulfilled. 

The last two statements of the theorem follow from the fact that for 

the conjugate frequence 8; j h, the expression for g (3.3) changes the 
I J 

sign. 

System (3.8) with a positive definite matrix C can be reduced to the 

system with a diagonal matrix C by a linear transformation of form (1.5). 

Hence, from Theorem 3.3 follows the theorem. 

Theorem 3.4. If for a system of equations (3.8) of class W with n 

positive definite matrix C on% of the frequencies 8, and 8,. (2.1) and 

(2.2) is strongly stable, then its conjugate frequency will be strongly 

unstable; and vice versa, if one of the frequencies 6, and 8,. is 

strongly unstable, then its conjugate frequency will be strongly stable 

(provided that the assumptions made at the beginning of the section are 

fulfilled). 

Example 3.1. For a system of two equations 
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-+ qyl+ p (cosf3t 
dt2 

- 2 cos 29 t) yi = 0 

@+ +o,~y,+p(-3coset+4cos2et)yl=0, ol>on 

(3.11) 

by comparison with (1.1) and (1.2) we find 

nla(i’ = 0.5, %l 
(1) = - i-5 t ZQ) = - 1, Jcpl@) = 2 (3.12) 

From Theorem 3.3 it follows that the frequencies 

or = q 9 02, 8, = 0.5 (WI fi 01,) (3.13) 

are strongly stable, and the frequencies 

e,* = 0 1 - % e,* = 0.5 (oi- (1)*) (3.14) 

are the only strongly unstable ones. 

For a canonical system of differential equations (3.8), where P(T) = 

P’(T) 0 we have 

fihj@) z n. 
jh 

(*), g = .hj(-n)njh(*) zz 1 fijh@) 12 > 0 (3.15) 

Therefore, the following theorem is valid. 

Theorem 3.5. If in a system (3.8) of class M with a diagonal positive 

definite matrix C: 

1) The matrix P(T) is symmetric P(T) = P*(T), then the frequencies 

8, (2.1) cannot be strongly stable. and their conjugate frequencies 8,* 

(2.2) cannot be strongly unstable. 

2) The matrix P(T) is skew-symmetric P(T) = - P*(T), then the fre- 

quencies 8, (2.1) cannot be strongly unstable, and the frequencies 0,* 

(2.2) cannot be strongly stable. 

Statement 1 follows from a theorem due to Krein [Z. p.3531 and [4. 

p. 4931. 

Note that if matrices Pi and P2(~) in (3.8) cause some frequency 

8, to be strongly unstable, the total perturbation matrix P(T) 

(3.16) 

may make the same frequency strongly stable. 
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Re are assuming that afX the systems of equations (3.6) with matrices 

QT), Pz(?? and P(T) (3. It;) are of class c 

Example 3.2. For a system of two differential equations (3.6) the 

frequency 6, = o1 + wz will be strongly unstable for the perturbation 
matrices P2(-r) and f)(7) 

For a System (3.8) with the total perturbation matrix f’(r) (3.16) the 

frequency 8, = w1 + w2 will be strongly stable. 

Consider a system (I,11 of GlElsS w, if P(T) = 6 

Tbe following theorems are the consequence of formulas (3.7) and 

(3.3). 

Theorem 3.5, For a system of equations (3. Is) of class I with 3 

diagonal positive definite matrix C: 

1) The frequencies fin J b (2.1) and 6* 
n,1,h 

(2.2) !#ill be strongly , I 
stab1 e for 

2) The frequencies on ~ ), (2.1) and 6; I h (2.2) will be strongly un- II , > 3 
stable for 

Theorem J, 7. For a System of equations (3.18) of class M with an 

arbitrary positive definite matrix C, both conjugate frequencies 8 ‘8 h 
and 8* n j h are either Simultaneously strongly stable, or simultane~& 

strong&X~stable, ar are simultaneously neither strongly stable, nor 

strongly unstable. 

Theorem 3.8. Let the matrix C in a system (3.16) of class M be 

diagonal and positive definite. 

I) ff the matrix M(r) is Symmetric IV* = W, then alI the frequencies 

‘n,j,h (2.1) and @*, J h 
(2.2) cannot be Strongly Stable. 

> t 

2) If the matrix “1(~) is skew-symmetric N* = - IV, then all the fre- 

quencies 0 n 1 h (2.1) and 6z,j,h (2.2) cannot be strongly unStable. 
# I 
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The proof of the theorem follows from the fact that for a symmetric 

matrix N(T) condition (3.20) is fulfilled, and for a skew-symmetric 

matrix condition (3.19) is fulfilled, including the equality sign in 
the case v .(“)v~:-~) = 0. 

Ih 

Example 3.3. For a system of differential equations 

Gy,/dt2f~(2sin6t-4sin26t)dy,/dt~o&=O 

d2y2 I dt2 f TV (6 sin8 t f 8 sin 28 t) dy, / dt $ ~?y, = 0 
(a~> 0 (3.21) 

by comparison with (1.2) we find 

v12(l) zz - i, via(2) = 2i, v,,(l) = - 3i, va1(2) = - 4i (3.22) 

The frequencies 

91 =oi +o,, el* =01-o a (3.23) 

will be strongly stable, and the frequencies 

e,* = 0.5 (ml - aa) (3.24) 

will be strongly unstable. 

A similar simple relation of stability for mutually conjugate fre- 

quencies does not exist in the general case of a system (1.1). Note 

that the perturbations, which are the matrices N (7) and PC-~), which, 

acting separately, cause neither strong stability nor strong instability, 

may cause both effects when acting together. Obviously, the quantity g 

(3.3) is an invariant for transformations of the form (1.5). 

4. Let us consider the stability of equations of class M with 

friction. The inequality containing real a, b and c 

Imva+ ib>c>O (4.1) 

can be transformed into the form 

b2 > 42 (9 + a) (4.2) 

Solutions of a System of equations (1.1) may be unstable for 
V.(O) > 0 and v,,;‘) > 0, if 

JJ 

I 
fi .w 

?!!J + i (vjy) - 
a ‘I. 

Im -?.-- + 
Oj 

v$)) - 2hn 
1 1 - 4g > (v.‘!’ + vhf)) > 0 33 (4.3) 

Corresponding to inequality (4.3)) an inequality of the form (4.2). 
solved for h becomes 
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where g is defined by formula (3.3). The value of the expression under 

the radical sign in (4.5) for arbitrarily small values of vjio) > 0, 
(0) > 

“hh 0 may be arbitrarily large. The expansion of the region of in- 
(0) stability may take place unly for vii f vhh (O) and j f h, i.e. in the 

case of combination resonance. The expansion itself occurs on account 
of a change in the relation between v jj (O) and vhLo). 

This interesting phenomenon was first noticed in [11 where its basic 

properties were demonstrated on a system of equations much simpler than 

those of class M. 

If g < 0, i.e. if the solut,ions of system (1. 1) without friction are 

strongly stable, they will remain strongly stable (4.5) when friction 

is introduced. Let g :’ 0, i.e. let the frequency 8, be strongly unstable. 

From (3.4) we find the expansion of quantities Im 11 2 for small v .(.O) 
(0) and vhh 

JJ 

Im z 1,1 = 1/1 [vi!;“) + v,,$’ + a (aa -- 4&11 (vjy) - v$,@)] + 0 ( 1 vj$@ / * + 1 v$) 13) (4.6) 

where 

In the region of stability of system (1. 1) without friction, i.e. 

for o2 - 4g > 0 when g 
(0) 

.’ (I one can always choose the numbers vjjo), 

“hh in such a way that the coefficient at the imaginary part of one 

of the roots t1,2 will be negative. Then the solutions will become un- 
stable. 

Comparing formulas (I. 6) and (3.7’) we arrive at the following theorem. 

Theorem 4.1. If in a system (1. 1) of class M with a positive definite 

diagonal matrix C a certain frequency 6, = 6” j h (2.1) has a wide range , , 
of instability adjacent to it 

%I + I& + 0 bL2) <e <fJ, + p’h, + 0 @?, h,,X, = const, J., - AZ # 0 (4.8) 

then upon introduction of friction vjlo) > 0 and vhko) > 0, the bound- 
aries 0, 2 of the region of instability in the plane of parameters p, 6 
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takes the form 

Theorem 4.2. If in a system of equations (1.1) of class M with a 

positive definite matrix C: 

1) A certain frequency 8, is strongly stable, then the introduction 

of sufficiently small friction will keep it strongly stable. 

2) A certain combination frequency is strongly unstable, then the 

introduction of friction can always lead to a widening of the region of 

instability for sufficiently small values of CI > 0. 

Theorem 4.2 shows the special danger of combination resonances, since 

in real systems a small friction is always present. 

In the relatively recent past the combination frequency was not being 

given sufficient consideration, as for instance in [71. 

5. Let us look into the analyticity of the boundaries of the insta- 

bility region. Suppose that the boundaries of the region of instability 

in the plane v. 8 for a system (1.1) of class M are found by the method 

of small parameter. The question arises about the possibility of con- 

structing the boundaries of the region of instability o,(l~) and 8,(p), 

where 8,(O) = 8,(O) = e” in the form of series of integer powers of ~1. 

If in equation (3.2) the infinitesimal terms of higher order are re- 

tained, then in formula (3.7) the expression under the radical sign will 

contain an additional function O(p). For the equations of class hf this 

function will be real for 1x1 E = Im A = 0. If g > 0, then, setting the 

expression under the radical sign in (3.7) equal to zero, one can always 

solve the resulting equation for h. We obtain two real expressions for 

A, i.e. for (e,,,(cl) - pO)p-’ which are analytic for l_~ = 0. Hence, we 

have the theorem. 

Theorem 5.1. If in a system of equations (1.1) of class M for a 

certain resonant frequency 8, or eo* (2.1) and (2.2) (assuming that the 

conditions of Section 3 are fulfilled) the expression for g (3.3) is 

positive, then this strongly unstable frequency will border on a region 

of instability with boundaries O,(u) and 8&Q. Here 8,(p) and 8,(p) are 

analytic functions of v in the sufficiently small neighborhood of the 

point ~1 = 0. 

Note 5.1. The condition g > 0 is in a way a necessary one, as can be 

seen from the following example. With additional restrictions imposed 

upon a system (1.1) of class M (for instance, the requirement that the 
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equations be canonical) the condition g > 0 will only be sufficient for 
the analyticity of 0,(p) and O,(p) at the point cc = o. 

Example 5.1. Consider a system of differential equations 

dzyl/dta + 01~~1 + 2alyz cos I_% = 0, d”yz,‘dt” + (o2”1/2 $m l!xgyl cos Bt = 0 (5.1) 

6) I >O 2, O,=o,+o,, al-O, a,-0 

Expressions (2.12) with accuracy up to O(c~l~a2~) have the form 

ulr = p2 -+ 0 12 - a,az I(p + 0i)2 d- 0221-1 -+ 0 (a12a,2), al2 = a1 (5.2) 
a2$ = (p - f3i)2 -+ Co22 - ala2 [(p - 2@i)* + 022)1-1 + 0 (a,*at2), azl = a, 

Setting p = iol + ir and 8 = 6, + A, we obtain from (2.13) 

(5.3) 

If al = pal, a2 = v2a2, ala2 > 0, then the equations of the bound- 
aries (5.3) for u > 0 take the form 

(5.4) 

In this case g = 0. the expressions 6,(p) and 8,(p) for the bound- 

aries have an algebraic singular point for ~1 = 0. 

In conclusion, let us note that some introductory questions were 

treated in a fashion analogous to [81, and the analyticity of the bound- 

ary for a canonical system was investigated in [91. 
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